

PANEL SESSION

Reinventing Audio and Music Computation for Many-Core

Processors

Moderated by David Wessel

CNMAT, University of California Berkeley

wessel@cnmat.berkeley.edu

Participants

Roger Dannenberg, Yann Orlarey, Miller Puckette, Peter Van Roy, Ge Wang

ABSTRACT

This text serves as an introduction to a problem facing

the field of computer music. Multi-core and many-core

personal and mobile computers will play a major role in

the future of audio and music computation, but it is far

from clear how that future will evolve. The hope is that

this panel will shed some insight concerning the path to

our parallel programming future.

1. INTRODUCTION

We are on the threshold of a sea change in audio and

music computing prompted by the computer industry's

move towards multi- and many-core computer

architectures. Eight-core desktop machines are already

widely available and the number of cores is expected to

double every two years. The computer music community

is now seriously challenged by the problem of writing

software for such multi- and many-core processors.

This shift to parallel architectures requires new

programming practices and their development appears to

be very difficult. Unless we reinvent our software for the

many-core future, the performance of our computer-

based instruments will come to a standstill as clock rates

for mono-processors will cease to increase.

The single core machine with its sequential

programming practices was providing seemingly

unending increases in performance with high and higher

clock rates. As late as 2005 the Semiconductor Research

Council predicted continued clock rate increases. A look

at Figure 1 suggests that we should be at 11 GHz in

2008. It appeared that we could continue to stay with

the sequential programming paradigm and ignore

parallelism as a way to improved performance.

The continued speed-ups to single-core architectures

came to an end when we hit a limit in the amount of

power that could be dissipated by the chip. This power

wall and the cramp it puts on clock rates has only

recently received serious attention from the general

computing world. Witness the fact that only a small

percentage of applications can take advantage of multi-

core much less many-core systems. In the computer

music community our software stable – csound,

Max/MSP, PD, SuperCollider, FAUST, CHUCK, STK,

Aura, and other musical-domain-specific languages, and

the vast majority of musical applications have yet to

fully deliver multi-core power. Exploiting parallelism,

though it is a concern and attempts are underway, has yet

to provide computer musicians with the increased

computational power promised by multi-core processors.

Figure 1. Microprocessor clock rates of Intel products

vs. projections by SRC in 2005 and then in 2007[2]

2. OUR MULTI-PROCESSOR PAST AND

PRESENT

The computer music community does have a record of

past and current successes with parallel architectures.

The seventies and the eighties saw the development of a

number of systems involving a general-purpose host

processor with custom accelerators typically composed

of multiple signal processors. Examples include

DiGuigno’s 4 series sound synthesis engines culminating

in the 4x, Freed’s Resoneight, multiple DigiDesign

Motorola 56000-based AudioMedia Nubus Cards, the

IRCAM Signal Processing Workstation, among others.

To this day the Kyma System from Symbolic Sound and

DigiDesign’s DSP-Farm remain highly productive.

Will our future music machines be homogeneous

wherein the cores are identical or will they mirror our

heterogeneous past when general purpose processors

were equipped with accelerators? Will the evolving

GPU take on the role of the signal processor?

3. VIRTUALIZATION

One of the advantages of special hardware is that

computational resources can be dedicated to the music

task. This can make real-time processes more

predictable. The general trend in software, however, is to

virtualize resources: we allocate threads rather than

processors, and virtual address spaces rather than

physical memory. Manycore computers will open up

many architectural decisions for music software design.

Is processor virtualization still a good thing? What

approaches seem most viable: (1) dedicate cores to tasks,

even if it means low efficiency, to maximize simplicity,

(2) partition tasks carefully and map them to various

cores to optimize performance, or (3) write software in

terms of many threads, and rely on languages and

operating systems to map threads to cores to maximize

portability.

4. VOICES, STREAMS, CHANNELS, TRACKS,

AND LINES

Most music consists of coordinated sources operating in

parallel. The traditional western orchestral model

involves a number of individual musicians, a score for

each to follow, and a coordinator in the form of a

conductor. Our early languages, the so-called Music N

languages, adopted this convention – a score and a

virtual orchestra. With the advent of real time, the

computer music performer began to function as a kind of

conductor who regulated the tempo, adjusted the

dynamics, and fine-tuned the coordination among the

voices. Even when the score is abandoned by more

interactive and improvisatory approaches to computer

music performance, the notions of separable voices,

streams, channels, and tracks remain operable and ripe

for parallelization. Given music’s highly exposed

parallelism it seems natural to assign voices to different

cores. In fact, if we think back to the heyday of the

patchable analog synthesizer voices were added by

adding more hardware resources. In these analog synths,

sound generation was not time-shared as it is our current

mono-processor approach. There was no operating

system to do time-slice management of concurrency, just

“bare metal” in the form of multiple analog hardware

resources. As many-core processors evolve we will

likely revisit this “bare metal” approach of dedicating

separate processors exclusively to voices.

Version 5 of Max/MSP takes a step in this direction. The

poly~ abstraction for managing multiple copies of a

process specified by a patch now uses multi-threading

and allocates the process copies to separate cores. This

mechanism allows the Max/MSP programmer to take

advantage of multi-core processors with significant gains

in performance. However, the performance gain is not a

simple multiple of the number of cores but quite

mysteriously depends on a number of features of the

process itself and overhead incurred by the multi-

threading mechanism. One would hope that given the

exposed parallelism that predicting performance would

be simpler. After a bit of experimentation with

parallelism in Max/MSP it becomes clear that we need

better tools to evaluate performance and aid the

programmer in locating bottlenecks. This will require

computer architectures with more program counters and

timing traces.

5. DESIGN PATTERNS AND

COMPUTATIONAL MOTIFS

Our community is extremely diverse in terms of

programming skills. Many successful computer music

composers and performers have limited technical

education but have learned enough programming to be

musically creative with a musical-domain-specific

language. There are also highly skilled professional

programmers in the field capable of dealing with

difficult race condition bugs and writing highly

optimized code. Writing efficient and correct parallel

code is hard and more bug-prone than sequential

programming so it would seem unreasonable to ask the

less skilled programmers to deal with the difficulties of

parallelism. One hope is that the expert programmers

will develop frameworks and libraries of the key and

consumptive components that take advantage of parallel

architectures. Such libraries would go a long way

towards the goal of providing a software environment

that will automatically map programs to multiple cores.

The approach we are pursuing at Berkeley [2] examines

musical applications and identifies the key

computational components. These design patterns are

things like map-reduce and pipe-and-filter while the

computational motifs are things like spectral processing,

unstructured grids as used in finite-elements models,

dense and sparse linear algebra, and others. Parallel

libraries serving our key design patterns and

computational motifs would provide for more productive

programming by all.

The move to parallelism is rich with opportunity and it is

critical that our musical and audio applications drive the

innovations. Meeting our need for the responsiveness of

a fine musical instrument will enrich the user experience

throughout the entire landscape of computing.

6. REFERENCES

[1] Semiconductor Research Council, International

Technology Roadmap for Semiconductors, Executive

Summary, 2005 and 2007, /public.itrs.net/

 [2] K.Asanovic, R.Bodik, J.Demmel, T.Keaveny,

K.Keutzer, J.Kubiatowicz, E. Lee, N. Morgan, G.Necula,

D. Patterson, K.Sen, J.Wawrzynek, D. Wessel and K.

Yelick. “The Parallel Computing Laboratory at U.C.

Berkeley: A Research Agenda Based on the Berkeley

View,” Tech. Re.UCB/EECS-2008-23, EECS

Department, University of Clifornia, Berkeley, March

21, 2008.

	Index
	ICMC 2008 Home
	Conference Info
	Welcome from the ICMA President
	ICMA Officers
	Welcome from the ICMC 2008 Organising Committee
	ICMC 2008
	Previous ICMCs
	ICMC 2008 Paper Panel & Music Curators
	ICMC 2008 Reviewers
	ICMC 2008 Best Paper Award

	Sessions
	Monday, 25 August 2008
	Languages and Environments 1
	Interaction and Improvisation 1
	Sound Synthesis
	Computational Modeling of Music
	Demos 1
	Posters 1
	Interaction and Improvisation 2
	Aesthetics, History, and Philosophy 1

	Tuesday, 26 August 2008
	Miscellaneous
	Algorithmic Composition Tools 1
	Network Performance
	Computational Music Analysis 1
	Panel 1: Reinventing Audio and Music Computation fo ...
	Panel 2: Towards an Interchange Format for Spatial ...

	Wednesday, 27 August 2008
	Studio Reports 1
	Mobile Computer Ensemble Play
	Demos 2
	Posters 2
	Algorithmic Composition Tools 2
	Interface, Gesture, and Control 1

	Thursday, 28 August 2008
	Interface, Gesture, and Control 2
	Languages and Environments 2
	Spatialization 1
	Computational Music Analysis 2
	Panel 3: Network Performance
	Demos 3
	Posters 3

	Friday, 29 August 2008
	Sound Processing
	Aesthetics, History, and Philosophy 2
	Interface, Gesture, and Control 3
	Spatialization 2
	Algorithmic Composition Tools 3
	Studio Reports 2

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Sessions

	Topics
	critical theory/philosophy of technology, postmodern cy ...
	sociology/anthropology of everyday sounds, situated per ...
	history of computer music, women and gender studies, ed ...
	philosophy/culture/psychology, music information retrie ...
	electroacoustic music composition, aesthetics of music, ...
	singing analysis/synthesis, music analysis/synthesis, v ...
	interactive and real-time systems and languages, music ...
	human-computer interaction, sound synthesis/analysis, i ...
	interaction design, computer music, performance art, el ...
	physical interface design, performance systems, gesture ...
	language/education/history/sociology of computer music, ...
	composition systems and techniques, languages for compu ...
	programming languages/systems, audio synthesis/analysis ...
	composition, music cognition, music informatics, human- ...
	music information retrieval, audio signal processing, p ...
	computational musicology, music cognition, music and AI ...
	music cognition, rhythm/meter/timing/tempo, computation ...
	music information retrieval, audio content analysis, to ...
	spatial audio, audio signal processing, auditory percep ...
	physical modelling, spatial audio, room acoustics, aura ...
	sonic interaction design, physics-based sound synthesis ...
	audio signal processing, sound synthesis, acoustics of ...
	audio signal processing, acoustics, software systems
	physics-based sound synthesis, virtual room acoustics
	composition, music analysis, software for pedagogy
	PANEL: Towards an Interchange Format for Spatial audio ...
	PANEL: Network Performance
	PANEL: Reinventing Audio and Music Computation for Many ...

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	David Wessel

